

Evaluation of AIRS Ozone

Jennifer Wei,
Eric Maddy, Murty Divakarla,
Nick Nalli, Antonia Gambacorta, Xingpin Liu, Walter Wolf,
Fengying Sun, Lihang Zhou
Chris Barnet
NOAA/NESDIS/STAR

Laura Pan NCAR/ACD

Questions?

- When and where does AIRS have skills?
- To what extent can AIRS provide tropospheric ozone? Where does the information come from?
- How do we validate our product? Can we use tracer correlations (O3-CO)?
- How can we improve the ozone retrieval?

Related Validation Activities

Scales	In Situ	Feature	Collaborator
Global	Global Sondes (WOUDC) (Beijing, Boulder, Lauder)	Global Profile Match-up	Murty Divakarla Laura Pan (NCAR) Kathleen Monahan (UC)
Large (UT/LS)	START	Stratospheric Intrusion	Laura Pan (NCAR)
Regional (mid-trop)	AMMA-AEROSE II	Biomass Burning	Nick Nalli Everette Joseph (HU)
Small (boundary)	WAVES	Air Quality	Dave Whiteman (NASA) Everette Joseph (HU)

Case Study for AIRS Ret. Sensitivity

- Typically, retrieval sensitivity is analyzed using a nominal/statistical atmospheric profiles
- The actual instrument sensitivity is profile dependent. The change in thermal structure should change the location of instrument's vertical sensitivity

Typical Ozone Profile No Stratospheric Intrusion (SI)

Lauder, New Zealand

- Retrieval vertical structure (ozone vertical variability) comes from regression
- Ozone is severely damped in physical retrieval
- Ozone channels in physical process are not optimized
- Ozone vertical functions are not optimized

Experiment in Physical Ret.

- Channel Selection
- Damping parameter (ogwt)
- Vertical Functions (Trapezoids)

AIRS Ret. w/ Diff Thermal Cond'n

Channel Kernel Functions

(1) No Stratospheric Intrusion

(2) Stratospheric Intrusion

Tropospheric O3-CO Correlation

- What does AIRS show in the tropospheric O3-CO correlation?
- Is the correlation consistent with known geophysical feature/process?

CO as a Tropospheric Tracer: Some Early Work

O₃-CO correlation: Indicator of ozone production

Parrish et al., JGR1998

O₃-CO correlations in surface and aircraft data have been used to test understanding of ozone production but the data are sparse.

Mid-Tropospheric Ozone (Biomass Burning)

MOPITT AIRS

http://www.eos.ucar.edu/mopitt/data/plots/mapsv3_mon.html

First Look

Summary

- AIRS Ozone channel sensitivity varies with atmospheric thermal structure
 - case study shows that there is an enhanced tropospheric sensitivity in case of tropopause fold/instrusion.
- AIRS tropospheric tracer correlation (O3-CO) shows consistency with geophysical feature

Summary

Scales	In Situ	Feature	AIRS Skill
Global	Global Sondes (WOUDC) (Beijing) (Lauder)	Global Profile Match- up	 Small bias in stratosphere, larger bias in troposphere NH is less bias than SH Agrees well near tropopause Poor in tropics, due to bad climatology
Large (UT/LS)	START	Stratospheric Intrusion	 Skill, if strong O3 or T(p) gradient layer Tropospheric variability comes from regression Too much damping in the physical process
Regional (mid-trop)	AMMA-AEROSE	Biomass Burning	Qualitatively agree well with TES?
Small (boundary)	WAVES	Air Quality	?

Future Plan

- Case study with AMMA-AEROSE and WAVES
- V6 consideration
 - Decide if we need the regression
 - Improve climatology
 - Channel selection, vertical functions, average kernels, etc.

